"The nanotubes are microscopic carbon cylinders, thousands of times smaller than a human hair that can be easily taken up by human cells," said Elimelech. " This "nanoscience version of a David-and-Goliath story" was hailed in an ACS preview of the work as the first direct evidence that "carbon nanotubes have powerful antimicrobial activity, a discovery that could help fight the growing problem of antibiotic resistant infections."
Using the simple E. coli as test cells, the researchers incubated cultures of the bacteria in the presence of the nanotubes for up to an hour. The microbes were killed outright -- but only when there was direct contact with aggregates of the SWCNTs that touched the bacteria. Elimelech speculates that the long, thin nanotubes puncture the cells and cause cellular damage.
The study ruled out metal toxicity as a source of the cell damage. To avoid metal contaminants in commercial sources, the SWCNTs were rigorously synthesized and purified in the laboratory of co-author Professor Lisa Pfefferle.
"We're now studying the toxicity of multi-walled carbon nanotubes and our preliminary results show that they are less toxic than SWCNTs," Elimelech said. "We are also looking at the effects of SWCNTs on a wide range of bacterial strains to better understand the mechanism of cellular damage."
Elimelech projects that SWCNTs could be used to create antimicrobial materials and surface coatings to improve hygiene, while their toxicity could be managed by embedding them to prevent their leaching into the environment.
Source: Yale University
Aporte: Guillermo Figueroa
No hay comentarios.:
Publicar un comentario