It is notable the increase of Listeria tolerance to various sanitizers.
Controlling
the food-borne pathogen Listeria (L.)
monocytogenes is of great importance from a food safety perspective, and
thus for human health. The consequences of failures in this regard have been
exemplified by recent large listeriosis outbreaks in the USA and Europe. It is
thus particularly notable that tolerance to quaternary ammonium compounds such
as benzalkonium chloride (BC) has been observed in many L. monocytogenes
strains.
However,
the molecular determinants and mechanisms of BC tolerance of L. monocytogenes are still largely unknown. Here we describe
Tn6188, a novel transposon in L. monocytogenes conferring tolerance to BC.
Tn6188 is related to Tn554 from Staphylococcus
(S.) aureus and other Tn554-like transposons such as Tn558, Tn559 and Tn5406
found in various Firmicutes. Tn6188 comprises 5117 bp, is integrated
chromosomally within the radC gene and consists of three transposase genes
(tnpABC) as well as genes encoding a putative transcriptional regulator and QacH,
a small multidrug resistance protein family (SMR) transporter putatively
associated with export of BC that shows high amino acid identity to Smr/QacC
from S. aureus and to EmrE from Escherichia coli. We screened 91 L. monocytogenes strains for the presence
of Tn6188 by PCR and found Tn6188 in 10 of the analyzed strains.
The isolates
were from food and food processing environments and predominantly from serovar
1/2a. L. monocytogenes strains
harboring Tn6188 had significantly higher BC minimum inhibitory concentrations
(MICs) (28.5 ± 4.7 mg/l) than strains without Tn6188 (14 ± 3.2 mg/l).
Using
quantitative reverse transcriptase PCR we could show a significant increase in
qacH expression in the presence of BC. QacH deletion mutants were generated in
two L. monocytogenes strains and
growth analysis revealed that ΔqacH strains had lower BC MICs than wild type strains. In conclusion,
our results provide evidence that Tn6188 is responsible for BC tolerance in
various L. monocytogenes strains.
Source: Müller A et al. (2013) Tn6188 - A Novel Transposon in Listeria monocytogenes Responsible for Tolerance to Benzalkonium Chloride. PLoS ONE 8(10): e76835. doi:10.1371/journal.pone.0076835
No hay comentarios.:
Publicar un comentario